Outline

I. Introduction
II. ESD/EOS failure of GaN-based LEDs
III. ESD/EOS Protection Devices
IV. Characteristics of TVS Zener Diodes
V. ESD Protection Test
VI. Issues on Vc Minimization for HBLED
VII. Summary
I. Introduction

Causes of Electrical Overstress

- ESD (Electrostatic Discharge)
- EOS (Electrical Over Stress)
 - driven over the maximum rated current or voltage
 - Energized power supply
 - hot plugging (in-rush current)
 - Transient event
 - transient over-current (current spike)
 - transient over-voltage (voltage spike)
 - Over-driving
 - driver circuit (intentional or not)

ESD Failure (OSRAM)
EOS Failure (leakage)

Fabrication: 26%
ESD/EOS: 38%
Assemly: 14%
Good: 4%
Mobile Ion: 3%
Unknown: 15%
II. ESD/EOS failure of GaN-based LEDs
ESD Engineering of GaN-Based LEDs

- LED with 900°C-grown p-cap layer could only endure negative 1100 V ESD pulses while the LED with 1040°C-grown p-cap layer could endure ESD pulses as high as negative 3500 V.

Typical ESD/EOS Failure of LED (OSRAM)

- ESD pulse < 100 ns (3 kV)
- EOS pulse > ms

Copyright ©2009 Sigetronics, Inc. A Company of Faith and Modesty
ESD/EOS Protection Devices

- Over voltage protection
- Over current limiter
- Over current protection

ESD

CRD/CLD
Resettable current limiter

heating

In-rush current protection (hot plugging)

passive type
Active type

Bidirectional ESD Protection Device

Strong Transient Voltage (ESD, Surge, EFT)
Weak Clamped Voltage

Forward

Bypass Excess Current

Circuit /Device to protect

Reverse

TVS diodes offer the most desirable characteristics for board level protection

- Industry standard requirements
 - ESD, EFT, Lightning
 (ENxxx or IEC standards)
- Smaller IC components
- Higher Pin density ICs

\[V_p \approx \pm 8 \text{ kV} \]
\[V_C \approx 20 \text{ V} \]
ESD Protection of GaN-based LEDs

High Brightness White/Blue/Green LED lamps with Sapphire substrate are basically fragile by ESD Surge.

Zener Diodes are used for the safeguard of LEDs to prevent from ESD surge.

III. ESD Protection Devices
Options for Addressing ESD Problem

<table>
<thead>
<tr>
<th>Devices</th>
<th>Merits</th>
<th>Demerits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crowbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDT, Spark gap</td>
<td>High power</td>
<td>Slow</td>
</tr>
<tr>
<td>SCR, Thyristor</td>
<td>High current</td>
<td>Snap back, Latch up</td>
</tr>
<tr>
<td>Clamping device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic</td>
<td>Cheap</td>
<td>Poor ESD robustness</td>
</tr>
<tr>
<td>Polymer</td>
<td>Small, Cheap, Low capacitance</td>
<td>Poor ESD robustness, Low temperature(<85 °C), Short lifetime</td>
</tr>
<tr>
<td>Schottky</td>
<td>Small capacitance, if circuit</td>
<td>Weak ESD robustness</td>
</tr>
<tr>
<td>Zener</td>
<td>Fast, Cheap, DC voltage & power regulation</td>
<td>High Vc, Large VC/VBR</td>
</tr>
<tr>
<td>TVS diode</td>
<td>Rugged, Fast (few ps), Small Vc, Low clamping heat, Good protection efficiency, Moderate VC/VBR, Small leakage current,</td>
<td>Chip size dependent power</td>
</tr>
<tr>
<td>MOV</td>
<td>Rugged, good stability, High Vc, Bidirectional, AC power line</td>
<td>Slow(500~1000 ps), Poor stability (aging) Low dc breakdown, Large leakage current,</td>
</tr>
<tr>
<td>Combination (Filter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT-BJT, C-R-C, Z-R-Z</td>
<td>Rugged, Fast (few ps), Small Vc/VBR, Good stability, Small leakage current, Good protection efficiency, Ideal Vc</td>
<td>Large size, Expensive</td>
</tr>
</tbody>
</table>

I-V Characteristics of Zener Diode

- \(I_R \): reverse leakage current
- \(R_Z \): differential resistance
- \(V_Z \): Zener voltage

\(P_{TOT} \): steady state power dissipation

\[
V_z + (R + R_z)I_d = V_S
\]

\[
I_d = \frac{V_z}{R + R_z} + \frac{V_z}{R + R_z}
\]

\[
P_{TOT} = 2V_Z^2 \left(\frac{1}{R_S} + \frac{2R_Z}{R_S^2} \right)
\]
TVS (Transient Voltage Suppressor) Zener Device

- V_{BR}: breakdown voltage at I_T
- I_T: test current
- $V_{ST} (= V_{RWM})$: stand-off voltage usually 80% of V_{BR}
- V_{RWM}: reverse working maximum voltage (max. off-state voltage)
- I_R: reverse leakage current
- I_{PP}: maximum peak pulse current
 - maximum permissible surge current to be protected by the device (i.e., 100 A)
- V_C: maximum clamping voltage

Comparison of Clamping Voltages

TVS zener diodes and Metal Oxide Varistors are popular voltage clamping devices.

For HBM (8 kV)

- $Z_S = 1.5$ kohm, $V_S = 8$ kV, $V_{BR} = 7$ V
- $Z_{Zener} = 30$ ohm
- $V_{CM} \approx 7 + (30/1,500) \times 8,000 \approx 167$ V
- $I_{PP} = 6$ A

For IEC 61000-4-2 (30 kV)

- $Z_S = 330$ ohm, $V_S = 30$ kV
- $Z_{TVS} = 1$ ohm
- $V_{CM} \approx 7 + (1/330) \times 30,000 \approx 98$ V
- $I_{PP} = 98$ A

Benefits
- Excellent clamping capability ($V_{CL} < V_{BR} + 0.1$ V)
- Reduce noise signals during normal operation

Drawbacks
- Expensive
- Large chip size

ESD Protection using Pi Filters (Z-R-Z, C-L-C)

Zener (30 Ω)

TVS Zener (1Ω)

Copyright ©2009 Sigetronics, Inc. A Company of Faith and Modesty
V. Characteristics of TVS Zener Diodes
Performance (Conventional Zener A)

P-Top structure

Catastrophic destruction @ 50~120mA

N-Top structure

Catastrophic destruction @ ~110mA

Performance (Conventional Zener B)

P-Top structure

Note:
- Biasing from forward to reverse direction
- Failure occurs above 60mA

Note:
- Re-measure: Catastrophic destruction !!!
Performance (Conventional Zener B)

N-Top structure

Note:
- Biasing from forward to reverse direction
- Failure occurs above 60mA

Note:
Re-measure: Catastrophic destruction !!!

Performance (TVS Zener, Sigetronics)

P-Top structure

Vz: ~7 V

Vz: ~12.5 V
Performance (TVS Zener, Sigetronics)

N-Top structure

![Graph showing voltage vs. current for N-Top structure with Vz: ~7 V and Rz: 7.0Ω (@5mA) and 6.5Ω (@10mA).]

Leakage Current Comparison

- Power loss
- Reliability
- Noise

![Graphs comparing leakage current for P-Top and N-Top structures, showing significant reduction after ESD surge (HBM +/- 8kV, 10 times).]
Thermal & ESD Stability (TVS Zener)

- Flood exposure of heat and light from LEDs

P-Top structure

- RT, 120, 150, 180°C
- 150°C ± 8kV HBM

Temperature coefficient:
+1.6mV/C

ESD stability at elevated temperatures is excellent

ESD Robustness (TVS Zener, Sigetronics)

Package (SOD923) finished data

- ESD per IEC61000-4-2
 - C = 150 pF, R = 330 ohm
- ESD proof up to ± 30kV
 - IEC61000-4-2 level-4 compliance

Current (A)

Voltage (V)

Copyright ©2009 Sigetronics, Inc. A Company of Faith and Modesty
Lateral Bidirectional TVS Zener (Sigetronics)

Lateral Bi-directional Structure

PNP (Double Pad)

- **V_z: ~7 V**
- **R_z: 9 Ω**

NPN (Double Pad)

- **V_z: ~7 V**
- **R_z: 12 Ω**

Vertical Bidirectional TVS Zener (Sigetronics)

Vertical Bi-directional Structure (Single PAD)

PNP structure

- **Forward**
 - **V_z: 7 V**
 - **R_z: 3.5 Ω @5mA**
- **Reverse**
 - **R_z: 0.5 Ω @5mA**

NPN structure

- **Forward**
 - **V_z: 6.5 V**
 - **R_z: 1.6Ω @5mA**
- **Reverse**
 - **R_z: 8.7 Ω @5mA**

Copyright ©2009 Sigetronics, Inc. A Company of Faith and Modesty
TLP & VFTLP for Bidirectional TVS Zener (±7 V)

TLP I-V Characteristics
- Rise time/pulse width: 10 ns/100 ns
- Peak triggering voltage: 7 V
- Leakage current: <10 pA
- ESD capability: > 18 A
- Clamping voltage: 14 V @18 A

VFTLP I-V Characteristics
- Rise time/pulse width: 100 ps/10 ns
- Peak triggering voltage: 8 V
- Leakage current: <10 pA
- ESD capability: > 20 A

![Characteristics Graph]

- \(R_D = 0.15 \sim 2 \Omega \)

(Measurement at Barth Electronics)

Excellent Features of Bidirectional TVS Zener

- **Bidirectional ESD protection**
- **Precise reliability control**
- **Small leakage current (x 1/10)**
 - Unidirectional: 30 pA (@4 V, Vz=7 V)
 - Bidirectional: 2 pA (@± 4 V, Vz= ±7 V)
- **High light emission efficiency**
- **High speed operation (small cap.)**
 - Unidirectional: 15 pF (@0 V, Vz= ±7 V)
 - Bidirectional: 8 pF (@ 0 V, Vz= ±7 V)
- **Small leakage current increase at HT**
 - Unidirectional: 17 pA/°C (@4 V for Vz=7 V)
 - Bidirectional: 3 pA/°C (@ ± 4 V for Vz= ±7 V)
- **Stable operation at HT (small TC)**
 - Unidirectional: 1.6~2 mV/K
 - Bidirectional: 0.8 mV/K
- **Current driving capability**
 - Zener: 60~120 mA
 - TVS Zener: 100~500 mA
- **Small differential resistance**
 - Zener: 20~50 ohm
 - TVS Zener: 0.5~10 ohm

![Features Diagram]

Voltage clamping

<table>
<thead>
<tr>
<th>Device</th>
<th>Rz</th>
<th>Estimated Vc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HBM(8kV)</td>
</tr>
<tr>
<td>Zener</td>
<td>30 ohm</td>
<td>167 V</td>
</tr>
<tr>
<td>TVS Zener</td>
<td>< 5 ohm</td>
<td>< 34 V</td>
</tr>
</tbody>
</table>

Current flow direction

- Unidirectional → DC operation only
- Bidirectional → both DC&AC operation
Process Capability Index (Sigetronics)

<table>
<thead>
<tr>
<th>LSL</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>USL</td>
<td>8.0</td>
</tr>
<tr>
<td>Mean value</td>
<td>6.852</td>
</tr>
<tr>
<td>Cpk</td>
<td>3.6</td>
</tr>
<tr>
<td>Sample #</td>
<td>144</td>
</tr>
</tbody>
</table>

Process Margin Test for Die Attach (Silver Paste)

- Original Chip
- A-Die: Well attached
- B-Die: Ag paste roll-up
- C-Die: Ag paste roll-up (contact to metal pad)
Performance Summary (P-Top)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>A</th>
<th>B</th>
<th>Sigetronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>-</td>
<td>Conventional (Diff)</td>
<td></td>
<td>TVS (Epi)</td>
</tr>
<tr>
<td>Max Zener current</td>
<td>I<sub>z,max</sub></td>
<td>50~120 mA</td>
<td>50~100 mA</td>
<td>> 100 mA</td>
</tr>
<tr>
<td>Zener resistance</td>
<td>R<sub>z</sub> @5mA</td>
<td>23 Ω</td>
<td>30 Ω</td>
<td>5 Ω (P-TOP) 7.5 Ω (PNP, forward) 0.5 Ω (PNP, reverse)</td>
</tr>
<tr>
<td>Leakage current</td>
<td>I<sub>R</sub> @4V</td>
<td>2.3 nA</td>
<td>1.4 nA</td>
<td>200 pA</td>
</tr>
<tr>
<td>ESD intensity</td>
<td>HBM</td>
<td>-</td>
<td>-</td>
<td>> ± 8 kV</td>
</tr>
<tr>
<td>ESD intensity @180C</td>
<td>HBM</td>
<td>-</td>
<td>-</td>
<td>> ± 8 kV</td>
</tr>
</tbody>
</table>

Note:
1. The parameters were obtained using on-wafer test.

Performance Summary (N-Top)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>A</th>
<th>B</th>
<th>Sigetronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>-</td>
<td>Conventional (Diff)</td>
<td></td>
<td>TVS (Epi)</td>
</tr>
<tr>
<td>Max Zener current</td>
<td>I<sub>z,max</sub></td>
<td>~ 110 mA</td>
<td>50~100 mA</td>
<td>> 100 mA</td>
</tr>
<tr>
<td>Zener resistance</td>
<td>R<sub>z</sub> @5mA</td>
<td>15 Ω</td>
<td>39 Ω</td>
<td>7Ω (N-TOP) 1.6 Ω (PNP, forward) 8.7 Ω (PNP, reverse)</td>
</tr>
<tr>
<td>Leakage current</td>
<td>I<sub>R</sub> @4V</td>
<td>2.3 nA</td>
<td>1.5 nA</td>
<td>200 pA</td>
</tr>
<tr>
<td>ESD intensity</td>
<td>HBM</td>
<td>-</td>
<td>-</td>
<td>> ± 8 kV</td>
</tr>
<tr>
<td>ESD intensity @180C</td>
<td>HBM</td>
<td>-</td>
<td>-</td>
<td>> ± 8 kV</td>
</tr>
</tbody>
</table>

Note:
1. The parameters were obtained using on-wafer test.
V. ESD Protection Test

I-V of LED after ESD (HBM) Zap

ESD Strike: ± directions, 5 times each

Blue LED

Zener
P-top 12 V
(Sigetronics)

Current (A)

Voltage (V)

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4

10^-9
10^-8
10^-7
10^-6

LED #1

RT

ESD
0.2 ~ 2.0 kV, 0.2 kV Step
2.5 ~ 8.0 kV, 0.5 kV Step

Blue LED (Cree)

Zener (Sigetronics)
Reverse Leakage Current

ESD Zap on LED with/without Zener Diode

- **Room Temp.**
- **Reverse Voltage**
 - 5 V
 - 6 V
 - 10 V

- **Reverse Leaks (A)**
 - Before ESD Zap
 - ESD ±8kV, 5 times

- **ESD Voltage (kV)**

ESD Zap on LED with/without Zener Diode

- **Acceleration Test at High Temperature**

- **Current (A)**
 - 25 °C
 - 70 °C
 - 110 °C

- **Voltage (V)**

VI. Issues on Vc Minimization for HBLED

Components of Clamping Voltage

Requirements
- Fast response time (<1 ns)
- Low clamping and operating voltage
- Do not degrade

\[V_c = V_{BR} + R_D \times I_{PP} + L_D \times \frac{dI}{dt} \]

Inductive voltage component
\[V_L = L_D \times \frac{dI}{dt} \]

Resitive voltage component
\[V_L = R_D \times I_{ESD} \]

Copyright ©2009 Sigetronics, Inc. A Company of Faith and Modesty
Key Elements for Surge Protection (HBLED)

- TVS device – dynamic resistance
- Flip chip package – inductance
- Sub mount (silicon, ceramic, metal) – inductance, thermal stability, EOS

Thermal conductivity
Thermal expansion coefficient

<table>
<thead>
<tr>
<th>Package Dependent Surge Clamping Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
</tr>
<tr>
<td>Shape</td>
</tr>
<tr>
<td>V<sub>CL</sub></td>
</tr>
</tbody>
</table>

Examples (Cree)

ESD Protection (using Bidirectional TVS Device)

1. Over current protection
2. Over current limiter
3. In-rush current protection (active, passive)
4. Over voltage protection

XLamp LEDs

Over current driven EOS damages

- Burned wires
- Broken wires
- Damage near bond pads
Examples

CMD: LuxGuard (UHB-LED)
Silicon sub mount & side mount
(using Bidirectional TVS Diode)

ESD: 8 kV or 15 kV
- Cost effective
- Thermal match (mismatch between LED and lead frame)
- Robust ESD protection (bidirectional TVS sub mount)

OnChip:
Silicon sub mount for vertical LED
(Bidirectional Device)

VII. Summary

- ESD protection → TVS (IEC61000-4-2 > ± 30 kV)
- Clamping voltage → Bidirectional (± 7, ± 12, ± 14, ... V)
- Resistance → Dynamic resistance (< 1~10 Ω)
- Inductance → Flip Chip → Sub Mount (EOS)
- Leakage current (reduce the afterimage in display panel)
- Current driving capability (EOS)
- Reliability
- Lifetime
- High temperature operation (T_j < 120 °C)
- Light absorption (photo reflector, small ESD chip)
- Reliable process control for die bonding
- Capacitance → Small & Bidirectional (high speed)
TVS Protection Applications

- Input Devices
 - Mice
 - Keyboard
 - Remote Control
 - Digitizing Tablets
 - Trackballs

- Digital Photography
 - Digital Photo Frames
 - Digital Still Cameras
 - Portable Webcams
 - Webcams

- Gadgets
 - PDA
 - GPS
 - NES

- Game Controllers
 - Gaming Pads
 - Joysticks
 - Steering Wheels
 - PS2 or PSP
 - XBOX

- Modems & Telephony
 - 56K USB Modems
 - Cable Modems
 - Internet Telephony
 - ISDN Modems
 - xDSL Modems

- Networking
 - Bluetooth Adapters
 - Direct Connect
 - USB Ethernet
 - USB Phone Line Network
 - USB Wireless Network

- Storage
 - CD RW
 - CD ROM
 - DVD Drivers
 - Ext Floppy Dr
 - Flash Mem Readers
 - HD
 - Removable Disks Dr
 - Solid State Drivers

- Printing & Scanning
 - Photo Printers
 - Card Scanners
 - USB Film Scanners
 - Flat bed scanners

Our TVS Zener diode is to protect your valuables against electrical shocks…

Thank you…